Department of Electrical Engineering
Energy and Power Systems

Introduction to
Electric Machines and Drives

Jae-Do Park, Ph.D.
Energy and Power Systems for Electrical Engineering (UC-Denver)
Degree Requirements Flow Chart

EE Foundation

- **ELEC 1201-1**
 - Introduction to Electrical Eng.
- **EE 3133-3**
 - Electromagnetic Fields
- **ELEC 2132/2142-3**
 - Circuit Analysis I & II
- **ELEC 3316-3**
 - Linear Systems Theory

Specialty Foundations

- **ELEC 3164-3**
 - Energy Conversion
- **ELEC 3724-1**
 - Energy Conversion Lab

Specialty

(Core Courses in Power Engineering)

- **ELEC 4164/5164-3**
 - Electric Drive Systems
- **ELEC 4174/5174-3**
 - Power Electronic Systems
- **ELEC 4184/5184-3**
 - Power Systems Analysis
- **ELEC 4808/5808-3**
 - Renewable Energy Systems
- **ELEC 4xxx-1**
 - Electric Drive Lab
- **ELEC 4xxx-1**
 - Power Electronic Lab
- **ELEC 4xxx-1**
 - Power Systems Lab
- **ELEC 4xxx-1**
 - Renewable Energy Lab

Graduate

- **ELEC 5xxx-3**
 - Advanced Electric Drive Systems
- **ELEC 5xxx-3**
 - Advanced Electric Machinery
- **ELEC 5xxx-3**
 - Practical Electric Drive Systems
- **ELEC 5821-3**
 - Advanced Power Electronic Systems
- **ELEC 5xxx-3**
 - Electric Power Quality
- **ELEC 5xxx-3**
 - Power Systems Dynamics and Protection
- **ELEC 5xxx-3**
 - Power System Operation and Control
- **ELEC 5xxx-3**
 - Substations Engineering Design
- **ELEC 5xxx-3**
 - Advanced Distribution Systems
- **ELEC 5813-3**
 - Energy Systems Planning

Legend

- Required
- Required lab
- Elective/Graduate
- Elective lab
- Graduate
Energy and Power Systems Engineering in Electrical Engineering (UC-Denver)

Machines and Drives Course Flow Chart

EE Foundation
- **EE 1201-1**
 Introduction to Electrical Eng.
- **EE 2132/2142-3**
 Circuit Analysis I & II
- **EE 3133-3**
 Electromagnetic Fields
- **EE 3316-3**
 Linear Systems Theory

Machines/Drives Foundation
- **EE 3164-3**
 Energy Conversion
- **EE 3724-1**
 Energy Conversion Lab

Machines/Drives Specialty
- **EE 4164-F3**
 Electric Drive Systems
- **EE 4xxx-1**
 Electric Drive Systems Lab

Machines/Drives Advanced
- **EE 5xxx-3**
 Practical Electric Drive Systems
- **EE 5xxx-3**
 Advanced Electric Drive Systems
- **EE 5xxx-3**
 Advanced Electric Machinery

Legend
- Required
- Required lab
- Elective
- Elective lab
- Graduate
Electric Machines and Drives

• Area covers
 – Mechanical system for electric machines
 – Power electronics converters
 – Magnetic circuits
 – Electric machine modeling
 – Control algorithms
 – Drive system design
 – Commercial drive operation
Jae-Do Park, Ph.D.

- Ph.D., Pennsylvania State University, 2007
- Expertise includes machine modeling and drive system design
- 12 years of industry experience on induction and synchronous reluctance machine drive
- Published 6 IEEE journal and conference papers, Invented 4 patents
- Renewable Energy Club advisor
- Member of ECRF at UC Denver
Electric Machines

- Electromechanical system
 - Electrical side
 - Voltage \(v \), current \(I \), flux-linkage \(\lambda \)
 - Electrical Power
 - Mechanical side
 - Force \(f \), linear displacement \(x \)
 - Torque \(\tau \), rotational displacement angle \(\theta \)
 - Mechanical Power

\[P_{\text{elec}} \rightarrow P_{\text{mech}} \]

Motoring mode
Generating mode
Electric Machines

• Classification
 – AC & DC machines
 – Rotary & linear machines
 – Synchronous & asynchronous machines
 – Brush & brushless machines
 – More classification can be possible
Electric Machines

• Construction

 – Stationary “Stator” and rotating “Rotor”
 – Built with high permeability material
 • What’s the advantage of higher permeability?
5W1H: Electric Machine Drives

• What
 – A control system for an electric machine
 • ASD: Adjustable Speed Drive
 • VFD: Variable Frequency Drive
 • VVVF: Variable Voltage Variable Frequency
 – To control
 • Position, speed, torque, tension
 • Voltage, current, power
General Drives

General purpose inverter systems
LG Industrial Systems
Special Drives

Gearless Elevator System
LG-Otis

Flywheel Energy Storage System
Pentadyne Power
5W1H: Electric Machine Drives

• What: Fan/Pump/Blower
5W1H: Electric Machine Drives

- What – Elevator
5W1H: Electric Machine Drives

• What – Traction
5W1H: Electric Machine Drives

- What - Winder
5W1H: Electric Machine Drives

• What – Windmill

• Mechanical to Electrical Energy Conversion
5W1H: Electric Machine Drives

- What – Energy storage
5W1H: Electric Machine Drives

• Where
 – Industrial
 – Commercial
 – Almost everywhere
 • From a watch to a train

• When
 – You want to control
 • speed, torque, power, voltage, current, etc
5W1H: Electric Machine Drives

• Why
 – Better performance, efficiency
 – Cost reduction, less maintenance
 – Low noise
 – New applications

• Who
 – Design engineers
 – Application engineers
 – Manufacturing/process engineers
5W1H: Electric Machine Drives

• How
 – Power electronics converters
 • Control voltage & frequency
 • Using various power semiconductor devices
 – Mathematical modeling of electrical machines
 – Complex controllers using DSPs
 • Microprocessor/Microcontrollers
 • MMI (Man-Machine Interface)
 • Communication with various control devices
5W1H: Electric Machine Drives

- How – Power Electronics Converters
5W1H: Electric Machine Drives

• How – Power Electronics Converters

Rotating Magnetic Field

Induction Machine
5W1H: Electric Machine Drives

• How – Controller using DSPs

TI TMS320C6711 DSK board

IO expansion board

Controller using Motorola DSP56F803
5W1H: Electric Machine Drives

- How – MMIs
Practical Problems

• Elevator
Practical Problems

• Hybrid Car
 – Gas engine has maximum efficiency at 70% power. The machines in the hybrid car can operate as generators. The battery pack could be charged when:
 1) Going downhill (Y/N)
 2) Going uphill (Y/N)
 3) Breaking (Y/N)
 4) Accelerating (Y/N)

* Toyota Prius
Practical Problems

• Motions
 – Which one is a passenger train and which one is a cargo train?
Questions?